Личный кабинет

Примерная программа поматематике по ФГОС для 5 класса.


Примерная программа по математике предназначена для 5 классов общеобразовательных учреждений. Она составлена на основе проекта Федерального государственного образовательного стандарта общего образования в соответствии с объ¬емом времени, которое отводится на изучение математики по примерному учебному плану. Программа содержит следующие разделы: – пояснительная записка, в которой определяются цели и задачи обучения по данному предмету; – общая характеристика курса; – место в учебном плане; – требования к результатам обучения; – основное содержание курса с описанием соответствующих действий детей; – примерное тематическое планирование с описанием ви¬дов учебной деятельности и указанием примерного числа часов на изучение соответствующего материала; – планируемые результаты изучения предмета – рекомендации по оснащению учебного процесса.

Примерная программа по математике по ФГОС для 5 класса.

5 класс

Математика

Примерная программа по математике предназначена для 5 классов общеобразовательных учреждений. Она составлена на основе проекта Федерального государственного образовательного стандарта общего образования в соответствии с объ­емом времени, которое отводится на изучение математики  по  примерному учебному плану.

Программа содержит следующие разделы:

– пояснительная записка, в которой определяются цели и задачи обучения по данному предмету;

– общая характеристика курса;

– место в учебном плане;

– требования к результатам обучения;

– основное содержание курса с описанием соответствующих действий детей;

                         примерное тематическое планирование с описанием ви­дов учебной деятельности и указанием примерного числа часов на изучение соответствующего материала;

                         планируемые результаты изучения предмета

– рекомендации по оснащению учебного процесса.

 

Пояснительная записка

Настоящая примерная программа курса математики для 5-6 классов продолжает соответствующую программу начальной школы и ставит перед собой главной целью формирование у школьников основ научного (математического) мышления, позволяющих продолжать обучение в основной и старшей школе.

Задачи изучения математики в 5 классе:

  • развитие логического  и критического мышления, формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимых для различных сфер человеческой деятельности;
  • овладение математическими знаниями и умениями, необходимыми для продолжения обучения в основной и старшей школе (7-11 классы), изучения смежных дисциплин и применения их в повседневной жизни.
  • развитие представления о математике, как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта  математического моделирования.

Общая характеристика курса

Программа ориентирована, главным образом, на формирование научных (математических) понятий, а не только лишь на выработку практических навыков и умений. Это предполагает особую организацию учебного процесса в форме учебной деятельности школьников.

Содержание учебной деятельности должно развертываться в теоретической форме – от общего к частному, от абстрактного к конкретному. Освоение понятий должно происходить не в форме отработки словесных формулировок, а путем введения учащихся в новый круг задач и включением их в деятельность по поиску общего способа их решения.

Поиск способа решения новой задачи является мотивационным ядром учебной деятельности, той ценностной установкой учеников, которая складывается в виде формального эффекта обучения как личностно-смысловое образование, основа желания и умения учиться.

Необходимость поиска способа решения новой задачи не диктуется требованиями учителя, учебника или программы, она должна быть обусловлена для детей внутренней логикой содержания обучения. Когда ученики обнаруживают, что задача не может быть решена теми способами, которыми они уже владеют, они сами заявляют о необходимости поиска новых способов действия. Иными словами, уже начав действовать, уже стремясь получить результат, дети фиксируют невозможность его немедленного достижения и необходимость открытия «чего-то нового». Т.о. новое понятие или способ действия не возникает для детей случайно; каждое следующее понятие с необходимостью вытекает из предыдущего. При этом принципиально, что поисковые действия детей (их пробы, мнения, предложения, вопросы) должны быть направлены не на внешние чувственно-представленные, непосредственно наблюдаемые свойства вещей, а на общий принцип их строения. Вскрывая этот общий принцип посредством собственных действий, осуществляемых не в словесной, а предметно-чувственной форме, ребенок тем самым обнаруживает существенное отношение, лежащее в основании нового понятия. 

Отношение, которое дети обнаруживают, преобразуя объект изучения, не обладает чувственной наглядностью, оно нуждается в особом – модельном способе презентации. При этом не всякое изображение можно назвать учебной моделью, а лишь такое, которое отображает внутренние особенности объекта, не наблюдаемые непосредственно, и обеспечивает их дальнейший анализ. Учебная модель, выступая как продукт мыслительного анализа, затем сама может стать особым средством мыслительной деятельности.

С одной стороны, в процессе построения модели происходит абстракция отношения от его предметных носителей. С другой стороны, уже построенная модель, в которой отношение представлено материально, позволяет преобразовывать ее, открывая новые свойства этого отношения. Преобразовывая и переконструируя учебную модель, школьники получают возможность изучать свойства отношения как такового, без «затемнения» привходящими обстоятельствами. Представленная моделью абстракция затем конкретизируется в различных частных условиях, что позволяет применять найденный общий способ к целому классу частных задач. 

Для того чтобы дети смогли через собственные поисковые действия открыть новый способ действия, необходимы особые формы организации совместной учебной деятельности класса и учителя. Основой этой организации является общеклассная дискуссия, в которой каждое высказанное предложение оценивается остальными участниками обсуждения с точки зрения соответствия способа действия и достигнутого результата. Предложения учителя подлежат такому же контролю и оценке, что и предложения учеников. При этом достоинства и недостатки предлагаемых способов действия оцениваются содержательно и ученики участвуют в выработке критериев контроля и оценки наряду с учителем. Благодаря этому у школьников складывается способность к самоконтролю и самооценке как базисным компонентам умения учиться.

Осуществление школьниками учебной деятельности способствует формированию у них таких мыслительных действий, как рефлексия, анализ и планирование, являющихся основой теоретического мышления и, одновременно развитию других познавательных процессов – восприятия, воображения, памяти. Это дает основание говорить о развивающем значении специальной организации учебной деятельности школьников.

В курсе математики 5 класса могут быть условно выделены четыре содержательные области: развитие понятия числа, величины и отношения между ними, элементы геометрии, элементы теории вероятностей и статистики.

Первая область посвящена дальнейшему развитию понятия числа: введению новых видов чисел ­­– обыкновенных и позиционных (десятичных) дробей.

 Новые виды чисел появляются из тех же оснований, что и натуральные числа на предыдущем этапе. Исходным отношением, порождающим все виды действительного числа, является отношение величин, получаемое в результате решения задачи измерения одной величины с помощью другой, принятой в качестве единицы измерения; меняются лишь условия этой задачи, что и определяет различия видов числа и способов его обозначения. Так различные виды дробей появляются в ситуации, когда единица не укладывается в измеряемой величине целое число раз. 

К этой же содержательной области отнесен ряд вопросов, связанных с формальной стороной использования чисел: вычисление значений числовых и буквенных выражений, решение линейных уравнений и простейших неравенств, изображение их решений на координатной прямой, описание числовых промежутков. Вводится координатная плоскость, рассматривается построение и описание простейших линий и областей на координатной плоскости. Рассмотрение этого материала направлено на обеспечение перехода к начинающемуся изучению в седьмом классе систематического курса алгебры.  

Основным содержанием области «Величины и отношения между ними» являются вопросы, связанные с применением числового инструментария к решению различных прикладных задач, моделирование отношений (представлению в виде чертежей, схем, диаграмм, таблиц и т.п.), анализ и решение текстовых задач.

 Геометрический материал курса в значительной степени связывается с изучением величин и действий с ними. Однако он  имеет и собственно геометрическое содержание, связанное с построением идеальных геометрических образов и развитием пространственных представлений, что может рассматриваться как подготовка к начинающемуся в седьмом классе изучению систематического курса геометрии.

Одной из особенностей разворачивания геометрического материала является конструктивный подход к геометрическим понятиям. Такой подход естественным образом приводит к большому числу задач на построение, «разрезание» и «перекраивание» геометрических фигур. Таким образом, также как и в арифметической линии, при формировании понятий основополагающую роль играют предметные действия учащихся.

Последняя содержательная область посвящена начальным понятиям теории вероятностей, вводится представление о случайных событиях и способах определения их вероятностей: классическом и статистическом.

 

Место в учебном плане

Курс «Математика» изучается на ступени основного общего образования в качестве обязательного предмета в 5 кл. в общем объеме 175  ч (5 ч в неделю). Из них на урочные занятия отводится 123 ч, на внеурочные – 52.

В учебном процессе используются следующие урочные и внеурочные формы работы:

 

Урочные формы

Внеурочные формы

  • общеклассная дискуссия – коллективная работа класса по постановке учебных задач, обсуждению результатов;
  • презентация – предъявление учащимися результатов самостоятельной работы;
  • проверочная работа;
  • проектирование в рамках уроков.

 

 

 

  • консультация – учитель работает с небольшой группой учащихся по их запросу;
  • мастерская – индивидуальная работа учащихся над своими математическими проблемами;
  • самостоятельная  работа учащихся:
  • а) работа над совершенствованием навыка;
  • б)творческая работа по инициативе учащегося;
  • проектирование вне уроков.
  • Математический клуб (математический кружок, математические бои и т.п.)

 

Требования к результатам обучения

К важнейшим личностным результатам изучения курса математики в 5 классе относятся:

·       познавательный интерес, установка на поиск способов решения математических задач;

·       готовность ученика целенаправленно использовать знания в учении и повседневной жизни для исследования математической сущности предмета (явления события, факта);

·       способность характеризовать собственные знания, устанавливать какие из предложенных задач могут быть решены;

·       критичность мышления.

К важнейшим метапредметным результатам изучения курса математики в 5 классе относятся:

·        способность находить необходимую информацию и представлять ее в различных формах (моделях);

·        способность планировать и контролировать свою учебную деятельность, прогнозировать результаты;

·        способность работать в команде, умение публично предъявлять свои образовательные результаты.

К важнейшим предметным результатам изучения курса математики в 5 классе относятся:

  • способность выявлять отношения между величинами в предметных ситуациях и в ситуациях, описанных в текстах; представлять выделенные отношения в виде различных моделей (знаковых, графических); решать задачи на различные отношения межу величинами;
  • владение алгоритмами арифметических действий с рациональными числами. Умение выполнять вычисления, используя правила порядка действий, свойства действий. Умение находить рациональные способы вычислений;
  • умение строить описания геометрических объектов, и конструировать геометрические объекты по их описанию, выполнять простейшие построения циркулем и линейкой;
  • умение измерять геометрические величины разными способами (прямое измерение, измерение с предварительным преобразованием фигуры, с использованием инструментов, вычисления по формулам);
  • способность различать детерминированные и случайные события, сравнивать возможности наступления случайных событий по их качественному описанию. Находить вероятности случайных событий в простейших случаях.

 

 

 

 

 

Содержание курса

Содержательная

область

Предметное содержание

Основные действия учащихся

Развитие понятия числа

 

Натуральные числа и действия с ними. Моделирование действий на числовой прямой. Позиционный принцип записи числа. Свойства арифметических действий. Общий делитель, наибольший общий делитель (НОД). Общее кратное, наименьшее общее кратное (НОК). Простые и составные числа. Представление натуральных чисел в виде   произведения простых множителей. Признаки делимости.

Измерение величины с помощью доли единицы. Обыкновенные дроби. Правильные и неправильные дроби, смешанные числа. Представление обыкновенных дробей и смешанных чисел на координатной прямой. Перевод обыкновенной дроби в смешанное число и обратно. Основное свойство дроб

Добавлено: 03.02.2015
Рейтинг: -
Комментарии:
0
Просмотров 963
Сказали спасибо 0
Сказать спасибо
footer logo © Образ–Центр, 2020. 12+